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the capacitance between two conductors, the
effect of a third conductor is the same as that
of a magnetic wall. However, there might be
some additional capacitance between each
conductor and the third one.

To demonstrate the use of the equivalent
length concept, let us take the case of Cristal’s
[7] filter which was originally designed for a
frequency of 1.5 GHz. Let us consider
Cristal’s resonators (fingers) 3 and 4 and their
center-to-center spacing as pitch p. For the
filter

Co = 4.560
Cr = 5.372e
Crr2 = 4.93¢ = 0.43684 pF/ecm

Zy = 76.38 ohms

(width of equivalent zero thickness conduc-
tor) w=0.438 inch. For C,,

Gy = 0.514¢
C, = 2wCy = 0.1012 pF.

For G,
¢y, = 035166
Cr, = 2uCy, = 0.06927 pF.

For G;,,

Cy,) = 0.350¢
wCs, = 0.03448 pF
Ce =C, + Cy, + C;, = 0.20495 pF.

The interconductor contribution to the
wm-phase capacitance for the structure is
4C, =4(0.210¢,). Thus the effective length of
the conductor is
0.20495 (0.216) (2.54) (2C.)
0.43684 0.43684
= 4.87 cm

lyy = 4.45 +

and the corresponding center frequency of the
filter is 1.54 GHz.

In conclusion, the present analysis gives a
frequency slightly less than that predicted by
Nicholson. However, better results will be
obtained if the positions of the electric walls
can be accurately evaluated, especially at the
shorted end of the conductor. The effective
length concept has been emphasized because
it can be conveniently used in other applica-
tions of such structures. Furthermore, it can
be easily improved upon by analog or rigorous
analytic techniques based on conformal trans-
formation methods.
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Simplifying Maxwell’s Equations
in Gyrotropic Media

The purpose of this correspondence is to
describe a method of handling Maxwell’s
equations in gyrotropic media. We have
found this method to be particularly useful in
the analysis of a small, ferrite filled wave-
guide, but believe it may be useful in general.
The form of the equations appear to be con-
siderably less complicated and capable of af-
fording more insight than the methods em-
ployed in the literature [1]-[3]. We will make
use of a pair of oppositely rotating, elliptically
polarized vectors which, as is well known [4]
can be used to diagonalize parts of the per-
meability, permittivity, and conductivity
tensors. However, except in infinite media,
these polarized variables will not simplify
Maxwell’s equations unless a new formulation
is used.

For illustrative purposes, a gyromagnetic
medium will be considered. The medium is
taken to be magnetized in the z direction and
a Cartesian coordinate system assumed. The
time dependence and z variation are taken to
be et and e, respectively. Only the mag-
netic equation of motion (permeability ten-
sor) and Maxwell’s two curl equations are
required, as the divergence relations are re-
dundant.

VXe= —jub
In matrix form
. 2]
0 18 @ ez] by
. 9 .
— B 0 "£ eyl = — jw by
9 2]
- — 0|le. b,
dy oz
DEFINITIONS
Let
bt = b, + jb,.

Manuscript received October 21, 1966.

Therefore,
bt + b~ b+ — b=
= by = - -
2 27
Similar definitions are used for: et, /%, e,, ¢,,

hz, hy. We shall define two operators of the
form

bs

Vi— = i + J_(')_ .
ax oy
Note
VitV = v vt =943
= transverse divergence gradient.!

MAGNETIC EQUATIONS OF MOTION

The exchange-free, lossless, magnetic
equation of motion can be manipulated to
give the following set of equations [4]:

by pu Jme 0 ) (ke
byl = |—jmz wu O ||hy|- (1)
bz 0 0 Mo hz
Changing to polarized variables:
b+ = utht
b= =uh
b, = I‘th (2)
where:
Mt WmWo Mg W
Mo + wo? — w2’ gy @ — w?

W
M+=H11+ﬂ1z=uo(1+ )
W — @

Wmnm
- = — = 1
I M11 M1z Ko ( + wo w)

wm = ydxM,
wo = ‘YH DC
v = gyromagnetic ratio

4rM, = saturation magnetization

Hpe = magnetic field present in gyro-
tropic medium

uo = permeability of free space.

MAXWELL’s EQUATIONS

Due to the similarity of the curl equations,
it is convenient to perform parallel operations
as follows:

V X A = jwee. 3)
a
0 ] — | b 2
8B 3y 2
. a .
—JB 0 — —||hy| = jweley]|. “4)
o
2] 2]
- — — 0 ||h. e,J
dy  or L)

! Similar results can be obtained for cylindrical
coordinates in either of two ways. The first is by
defining new variables like % =bp+jb g and vi=a /ar
+j(1/r)8/3¢. With these definitions, the transverse
divergence gradient, V¢ becomes (1/r4+V)vt
=(1/r4vY)V~. The second is by preserving the Car-
tesian definitions and simply transforming into cylindri-
cal coordinates.



CORRESPONDENCE

Changing to polarized variables and combin-
ing the x and y component equations:

Bet — jvte, = — jwbt H Bht — j9th, = + joee® ®)
—Be~ + Ve, = — jwb™ || —Bh™ 4+ jVTh, = + joee. 6)
In order to proceed further, it is necessary
to split e, and 4, into two parts as follows:
ez+ + el—. h2+ + hz—
&=~ e= bt = poha* b.” = pohs
The defining equations for e and 4.} are
derived from the z components of the curl
equations. After some algebra we can let:
—jwb,t = — jvet s Jjwee,t = — jy~ht @)
—jwb,” = - jvte” Jwee,” = + jvth. ®)
Without performing the above steps we
found it impossible to proceed further. If we
now combine (7) and (8) with (2), (5), and (6),
¢t and A can be eliminated and the follow-
ing equations derived:
i .2 + v ,2
et = —j f’_’fﬂhz+ _ave h, Bt = jwm et &ez ©)
8 Bwe Bro wfBuo
. Wiy ivée LWERT Jvi
e, = + '_—hz— + hz hzh = e, — €, 10)
J B Buwe Bro fpo (
or in matrix form
et _Jemy gV _ave [hz+ Bt [jwﬂ# ive
_ B 2Bwe 2Bwe Bro 2080
= o9 . e PR,
e IV Jopro IV B hi- v
2Bwe B 2Bwe 2By
Note if we add (9) and (10)
Jows
= — 2 G — b Hh— Yot — umer). 12
€ 28 ( ) z 260 (u M ) 12)
The above equations are complete and
can be used to solve boundary value prob-
lems. By further manipulation of (9) and
(10), e;* and 4= can be combined and the two
coupled wave equations, first derived by
Kales [1] are arrived at:
28 —
V:?h: + (w2€#0 - T_fi:) h: = — joeB (_‘_’{_L) [ (13)
2w2eutu
tez+( P —Bz)e +Jw,8uo( )h (14)
or
Vith, + | wleno — = — jues e, (15)
Hi11
2 2
vie, + (wre — BT 52> €. = + joBuo Bz g (16)
K11 M1

To illustrate the potential utility of this
method, we can consider wave propagation in
an undersized waveguide completely filled
with a longitudinally magnetized, lossless fer-
rite. The exact solution for this problem is
quite complicated [2], [6]. However, a very
accurate solution, valid over a wide band of
frequencies above ferromagnetic resonance,
can be derived with one simple approxima-
tion.

The approximation to be made is not ap-
parent in the form of Kales’ equations (13)
and (14), but by careful examination of (11)
(left column) one can readily see that when
the transverse variation is much greater than
the dielectric wavenumber (V2>wlue),
e.;¥=—e, and e, =0 (providing #,>0). If we
set e, to zero, (13) indicates a propagating
TE wave will result. This mode will satisfy
all the boundary conditions with the excep-
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tion of e;=0 on the walls. Due to the bire-
fringent nature of the material, another propa-
gating mode is also possible. Equation (15)
indicates this mode will propagate (/. small) if
there is a rapid transverse decay. Thus the
exact solution may be viewed as a large ampli-
tude TE mode which fills the guide and a
small amplitude “TM” mode which clings to
the walls. Both modes must have the same
axial propagation constant. For most prac-
tical applications, only the TE mode is im-
portant.

It is interesting to note that the mode
which fills the guide is the same mode that
results from the magnetostatic approxima-
tion [71, [8] in which the curl % is set equal
to zero.

The solution as obtained with the above
theory is more satisfying than that of the
magnetostatic approximation for several
reasons. First, the other mode is completely
missing from the magnetostatic solution.
Second, while the spatial variation of # is
much greater than the time variation of the
displacement current, the ratio of e*//" is not
negligible and, in fact, can become extremely
large near resonance. Finally, there is a ten-
dency to regard the magnetostatic mode as a
separate entity, while in fact it is simply one of
the electromagnetic modes. When the spin
exchange forces are neglected, as above, the

jve
2wBuo
Jweu™ v
Bro 2wPBo

e,
(an

dispersion relation has only two roots, and
the magnetostatic dispersion relation cor-
responds to a portion of one of these roots
near resonance.
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